- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Kiatsupaibul, Seksan (2)
-
Smith, Robert L (2)
-
Pedrielli, Giulia (1)
-
Ryan, Christopher Thomas (1)
-
Zabinsky, Zelda B (1)
-
and Zabinsky, Zelda B. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper addresses the broader topic of using game theoretical learning mechanisms to efficiently and effectively identify relevant (e.g., optimal and non-mixed) solutions to large scale optimization problems. The longer-term goal is for the proposed MCFP-variants to become established methods for finding pure Nash equilibria and global optima of large-scale problems.more » « less
-
Kiatsupaibul, Seksan; Smith, Robert L; and Zabinsky, Zelda B. (, Operations research)Optimizing the performance of complex systems modeled by stochastic computer simulations is a challenging task, partly because of the lack of structural properties (e.g., convexity). This challenge is magnified by the presence of random error whereby an adaptive algorithm searching for better designs can at times mistakenly accept an inferior design. In contrast to performing multiple simulations at a design point to estimate the performance of the design, we propose a framework for adaptive search algorithms that executes a single simulation for each design point encountered. Here the estimation errors are reduced by averaging the performances from previously evaluated designs drawn from a shrinking ball around the current design point. We show under mild regularity conditions for continuous design spaces that the accumulated errors, although dependent, form a martingale process, and hence, by the strong law of large numbers for martingales, the average errors converge to zero as the algorithm proceeds. This class of algorithms is shown to converge to a global optimum with probability one. By employing a shrinking ball approach with single observations, an adaptive search algorithm can simultaneously improve the estimates of performance while exploring new and potentially better design points. Numerical experiments offer empirical support for this paradigm of single observation simulation optimization.more » « less
An official website of the United States government

Full Text Available